$$
P_{1},-, P_{s} \in M
$$

P good polybhoral dscump

$$
\begin{aligned}
& Q_{1}-1 Q_{s} \in \mathbb{G}(\tilde{m}) \text { gincial } \\
& q_{i} \in X_{0} \quad q_{i}=\mathbb{G (L _ { i }) \cdot Q _ { i }} \cap X_{0}
\end{aligned}
$$

$h:\left(\Gamma_{1}, x_{1}-, x_{s}\right) \rightarrow M_{\mathbb{R}}$ mellecd tipical cure

$$
h\left(x_{i}\right)=P_{i}
$$ simple ginus 0

$$
\begin{aligned}
& s=|\Delta|-1 \\
& \Delta=d_{\text {cyree }} \text { of } h
\end{aligned}
$$

subdividing edges of $\Gamma \sim \sim$ niw graph Γ aloy with now $h: \hat{\Gamma} \rightarrow M_{R} \quad$ con asiume for $y \in \tilde{\gamma}, \quad h(y)$ vatce of P iff y is a vatex of \tilde{r} or y is in malked unboumd.d (conld hwer bivalint) cijo.

Can gat anothe trop curve $h: \tilde{\Gamma} \rightarrow M_{\mathbb{R}}$
by removing all masked adgol + any resulting bivalent notices. (idintifym aljucunt edges)
$\hat{\Gamma}^{[0]}=$ vertices in Γ not adjacent to maker edge
$\hat{\Gamma}$ has distinguished edges $E_{1,-}, E_{s}$ w/ the end pant of $E_{x_{i}}$ in the interior of E_{i} there are mulled edger of $\hat{\Gamma}$.

Use this to do what? given tropical corse hams
 whose wiscosated tropical cures is $h \quad\left(M_{n} H(h)\right)$

Before you do that you cunt the \# of "pre-loy" curve "things":

A torically transvorise praley curse in X_{0} is a itable mep
 cune.
and f satisfics the following:
(010) If $p \in C$ is. $f(p) \in \operatorname{Sing}\left(x_{p}\right)$ thin
(1) p ir a double pont of $C \quad X$ conturned in two distmact irceducible compunants $C_{11} C_{2}$ of C ad $f\left(C_{i}\right) \subseteq D_{v_{i}}$ for distinct vartices $v_{i} \in P$ juined by un edge w.
(2) Let $w_{i}=$ intur.ctm multiptraity of C_{i} at p with $D_{\omega} \leq D_{i}$
 Than $w_{1}=w_{2}$

A line on complete tosic susface Y is a noncomitat torically tronsvors map $\phi: \mathbb{P}^{\prime} \rightarrow Y$ sit. $\# \phi^{-1}(\partial y) \leqslant 3 \quad d \# \phi^{-1}(D) \leqslant 1$ fus any toric diviluer on Y

Prop 4.22
For each Edge $E \subseteq \hat{\Gamma}$ choor orientation $\partial E, \partial E^{+}$if bounded ∂^{-E} if unberdid
let $U_{(\partial E, E)} \in M$ primitive tangent vector to $h(E)$ printing from $h(\bar{\partial} E)$ to $h\left(\partial^{+} E\right)$ or in unbound direction of $h(E)$. Thin the map:

$$
\text { 历: } \int_{E \in \hat{\Gamma}^{(1)} \backslash \hat{\Gamma}_{\infty}^{(1)} / \tilde{\eta}^{[0]}(\sigma E, E)} m
$$

$$
\begin{aligned}
& \text { there we what now...? } \\
& \underset{i=1}{x} \prod_{i=1}^{s} \operatorname{lu}_{\left(\Omega E_{i} E_{j}\right)} \\
& H \longmapsto\left(\left(H\left(\partial^{+} E\right)-H\left(\partial^{-} E\right)\right)_{E 1}\left(H 1\left(\partial^{-} E_{i}\right)\right)_{i}\right.
\end{aligned}
$$

Is un inclusson of lattices of finite index D
$D=\#$ of maked tosically transvorse proilog cuves
up to isumurghiom of form $f:\left(c_{1} x_{1},-x_{1}\right) \rightarrow X_{0}$
$f\left(x_{i}\right)=q_{i} \underbrace{\text { and }}_{\downarrow} \frac{\text { associuted to topical cwre } h}{}$
using the two cunditions we fonce a tricully trunsvorse pre-log cuve to have we can cook up a tropical cuve

Log (wres
$f: C^{ \pm} \rightarrow S^{t} \quad \log$ smooth, (intcyral), rolative dimension 1 intcysal is a condition on $\bar{M}_{S, f(x)} \longrightarrow \bar{M}_{C, x}$ wor't say what it mians but practically mans \underline{f} is flat.

Etale local doscription:
$S=\operatorname{spcc} A \quad(A, M) \quad$ strictly hinsdin local riny , wil $k=k$ or sip cloid... $0 \in S$ clon.d pt.

Choose chart:

$$
Q=\bar{M}_{5,0} \xrightarrow{v} A
$$

that defires loy stucturis on S.

$$
\begin{aligned}
\bar{x} \in C_{0} & \rightarrow C \\
1 & \square \\
0 & \rightarrow S
\end{aligned}
$$

btule locally cround \vec{x} we have: $C^{\frac{t}{2}}$ is isumurgic to one of the following loy schimes:
(1) $V=S_{p c c} A[u]$

$$
\begin{aligned}
& Q \rightarrow O_{V} \\
& q \longmapsto f^{*} v(q)
\end{aligned}
$$

here f " cmooth. No interitry new infirmation. juin by loy.
(2) $V=\operatorname{spcc} \frac{[[u, v]}{(u v \cdot t)} \quad$ sume $t \in m_{A}$

$$
\begin{aligned}
& N_{N}^{2} \oplus Q \longrightarrow O_{V} \\
& \underset{(1,1)=\alpha}{\text { nolutim }} \quad((a, b), q) \longmapsto u^{4} v^{b} f^{-b} \sigma(q) \\
& \mathbb{N}^{2} \oplus Q \longleftarrow Q \quad \alpha \\
& \uparrow_{N^{2} \leftarrow}^{\mathbb{N}} \longleftarrow \prod_{\Delta}^{\alpha} \uparrow_{1}^{\alpha} \rightarrow \text { ditiminid by } f^{*} \text { with } \sigma(\alpha)=t
\end{aligned}
$$

Horc C_{0} is nodal
(3)

$$
\begin{aligned}
& V=S_{p o c} A[u] \\
& \mathbb{N} \oplus Q \rightarrow O_{V} \\
&(a, q) \longmapsto u^{a} f^{*} v(q)
\end{aligned}
$$

- Here $n=0$ ins the image of a section $S \rightarrow C$ which we thick of as a marked port.
- The log ste. "the rum of that chick "pulled beck from the base + the divisurial log str cong form $(u=0)$.

Ex
$\bar{M}_{(X, D), p} \longleftrightarrow \mathbb{N}^{\# \text { of components of } D \text { pentiong through } P}$ $\underset{\text { mouth }}{\downarrow} \bigvee_{\text {SnCD }}$

$$
\bar{M}_{D}:=i_{\substack{x * \\ \text { inclim } \\ \text { of } \\ \text { axis into }}} N \neq i_{y_{*}} N
$$

stalls of
pullback of the

$$
\overline{\mathcal{M}}_{\left(A^{2}, V(x y)\right)}
$$

$$
\text { abase } \frac{\log \text { structure. }}{}
$$

Gwen a toxically pre-log curse $f: C X_{v}$ went to count $\#$ of non komurinic \log goings $f^{ \pm}: C^{ \pm} \rightarrow X_{0}^{ \pm}$with $f^{\ddagger}=f$

- Howe to impose some condition that $\int_{f}^{\text {puck }}$ is strict whore $X_{0}^{t} \rightarrow S_{\text {pock }} k^{t}$ is strict.

Recall $\partial X_{0}=\overline{\partial X \backslash X_{0}} \cap X_{0}$ this is like the prosimage of the bounder on X but the pullback log is a little more. then just that.

- Note $\quad X_{0}^{ \pm} \rightarrow S_{p \text { peck }}{ }^{t} \quad$ strict outride $\quad \operatorname{Sing}\left(X_{0}\right) \cup \partial X_{0}$

$$
\partial X=\bigcup_{\text {inn }_{\text {ray }} \Sigma_{p}} \quad \bar{M}_{(x, D), y} \leftrightarrow \mathbb{N}^{\# \text { of compunatr of } D \text { passion thrash } y}
$$

\Rightarrow for $p \in X_{0} \backslash\left(\operatorname{sing}\left(x_{0}\right) \cup \partial x_{0}\right)$ we lave $\bar{\mu}_{x_{0, p}}=N$ there piss int ind in one cumpmont
$\mu_{x_{0, p}}=\sigma_{X_{0}}^{*} \oplus N$ which looks like $k^{*} \oplus \mathbb{N}$ pulloached!
\Rightarrow punts on C which mop to $X_{0} \backslash\left(i n g\left(X_{0}\right) \cup \partial X\right.$. $)$ mut be smooth pouts of C. (nodes)

- By the above durable pants map into $\operatorname{sing}\left(X_{0}\right)$
- It follows log murkings must fall into $\partial x_{0} \leadsto \leadsto$ only nina consinuince of

Prop 4.23
Let $f:\left(C_{1} x_{1}, \ldots, x_{5}\right) \rightarrow X_{0}$ be torically transverse pre-log curve consituctid from, h using prop 4.22 simple tropical cure.

Assume twitter each edge $h(E)$ for $E \in \tilde{\Gamma}^{(1)} \tilde{\Gamma}_{\infty}^{[17}$ has affine length divisible by $\omega(E)$
(this always huppore after rescaling M) Thin the $\#$ of non isomorphic lay canejps

$$
\begin{gathered}
f^{t}:\left(C^{t}, x_{1,-}, x_{1}\right) \rightarrow X_{0}^{t} \\
\downarrow \\
\text { Spock }^{t}
\end{gathered}
$$

with- $\underline{f}^{t}=f$ and strict whore $x_{0}^{\ddagger} \rightarrow$ Spock t is dict is

$$
\left(\begin{array}{l}
\prod_{E \in \hat{\Gamma}^{[n} \backslash \hat{\Gamma}_{\infty}^{c \mid 1}} \omega(E)
\end{array}\right)\left(\prod_{i=1}^{s} \omega\left(E_{i}\right)\right)
$$

