$$P_{1,-1}P_{s} \in M$$
 P good polybrohal drownp

 $Q_{1,-1}Q_{s} \in G(\widetilde{M})$ general

 $Q_{1} = X_{0}$
 $Q_{i} = G(L_{i}) \cdot Q_{i} \cap X_{0}$

$$h: (P_1 \times_{11} - 1 \times_{12}) \longrightarrow M_R$$
 marked fingle games D

$$S = |\Delta| - 1$$

$$\Delta = \text{degree of } h$$

subdividing edges of \(\sigma \sin \) new graph \(\tilde{\gamma} \) along with new \\
\(h : \tilde{\gamma} \rightarrow Mpc} \) can assume for \(y \in \tilde{\gamma} \), \(h(y) \) vertex of \\
\(\tilde{\gamma} \) if \(y \) is a vertex of \(\tilde{\gamma} \) \(\tilde{\gamma} \) (could have bivalent) \\
\(or \(y \) is in marked unbounded vertices \\
\(cd_{ge} \).

Can get another trop cure $h: \widehat{\Gamma} \to M_{IR}$

by removing all marked edges + any resulting bivalint restrices.

(Idintifying adjusted edges)

PLOT = vertices in 1 not adjusted to maked edge

 $\widehat{\Gamma}$ has distinguished edges $E_{1,-1}E_{s}$ w/ the end point of $E_{x_{i}}$ in the interior of E_{i} there are marked edger of $\widehat{\Gamma}$.

Use this to do what? given tropical chuse homes

count H of log cures of through gi

tomorrise

whose associated tropical curse is h (MnH(h))

Before you do that you cannot the # of 'pre-log" curve "things":

A torically transverse prelog cure in X_0 is a stable map $f: C \longrightarrow X_0$ it. $\forall v \in P$ $f^{-1}(D_v) \longrightarrow D_v$ is torically transverse come come

and f satisfies the following:

- (1) If p ∈ C 1.1. f(p) ∈ Img (X_B) than
- (1) p is a double point of C (contained in two district irreducible components C_1, C_2 of C and $f(C_1) \subseteq D_{V_1}$ for diffined vertices $V_1 \subseteq P$ goined by an edge ω .
- (2) Let $w_i = interaction multiplicity of <math>C_i$ at p with $D_{\omega} \leq D_i$ (• that v_i if ϕ is regular function defined in a ribbal of f(p) in D_{v_i} (i.t. $(\phi = 0) = D_{\omega}$ (locally) than $f^*(\phi)$ regular function on C_i near p)

 Then $w_i = w_2$

A line on complète toric surface Y is a nonconstrib torically transvoirce map $\phi: \mathbb{P}^1 \to Y$ (if. $\# \phi^{-1}(\partial Y) \leqslant 3$ if $\# \phi^{-1}(D) \leqslant 1$ for any toric divisor on Y.

Prop 4.22

For each Edge $E \in \Gamma$ choose viantation D = A = A = Aif when A = A = A

let $U_{(\mathfrak{I}^{-}\mathsf{E},\mathsf{E})}\in M$ primitive tanget vector to $h(\mathsf{E})$ primitive tanget vector to $h(\mathsf{E})$ primitive tanget or in unbounded direction of $h(\mathsf{E})$. Then the map:

Φ: Map(p̂ col M) - IT M/ (J· ε, ε) ×

there are what now

$$H \longrightarrow (H(9,\epsilon)-H(9_{-}\epsilon))^{\epsilon} (H(2,\epsilon'))!$$

Is an inclusion of lattices of finite index \mathbb{D} $\mathbb{D} = \text{th of marked torically transverse pre-log corres}$ $\text{up to isomorphism of form } f: (C_{1}x_{1}, -, x_{i}) \to X_{0}$ $f(x_{i}) = q_{i} \text{ and associated to topical correct.}$

using the two conditions we force a trically transverse pre-log cure to have we can cook up a tropical cure.....

Log (wies

 $f: C^{\dagger} \longrightarrow S^{\dagger}$ log smooth, (integral, relative dimension I integral is a condition on $\overline{\mathcal{M}}_{S,f(x)} \longrightarrow \overline{\mathcal{M}}_{C,x}$ world say what it means but practically means f is flat.

Etale local description:

Choose chart:

that defines loy structure on S.

$$\vec{x} \in C_0 \longrightarrow C$$

stale locally around is we have: Ct is isomar, his to one of the following log schimes:

$$V = S_{pcc} A [u]$$

$$Q \rightarrow O_{V}$$

$$Q \mapsto f^{*}_{\sigma}(Q)$$

here f is smooth. No interesting new information. Twin by log.

$$N \oplus Q \rightarrow O_{V}$$

$$(a, g) \longmapsto u^{a}f^{*}\sigma(g)$$

- Here N=0 in the image of a section $S \longrightarrow C$ which we think of as a marked point.
- the log str. is the sum of that which is pulled buck from the base + the divisorial log str comy from (4=0).

Gwn a torically pre-log curre f: XC -> Xv went to count # of non is strict.

When to impose some condition that f is strict where X_0 is strict. Recall $\partial X_0 = \overline{\partial X/X_0} \cap X_0$ this is lile the premaye of the boundary on X but the pullback by is a little more. Then Jet that.

· Note X = > Speckt strict autilde Sing (X0) U 2X0 Xo = union of toric divisors

Dr vet vertex 2X6 like where Xo "mantly" meets others in 2X M(X,D), y => N $\int \partial X = \int D_{ray},$ For pe Xol(Sing(Xolvaxo) we low $M_{X_0,p} = N$ MXOIP = OXO BN which looks there pots est in one component pullbacked! C which map to Xo (ing(x) UdX.) must be smooth points => brufts . on

e durple points map 1/htv Sing(X0) · By the above log murkings must fall into DXo. - sonly real consequence of · It follows

of C.

Prop 4.23

Let $f:(C,x,-,x_s) \longrightarrow X_0$ be torically transverse pre-lay course constructed from h using Prop 4.22 simple tropical core.

Assume further each edge h(E) for E & MEN MEN DO Has affine length divisible by w(E)

(This always happens after rescaling M) Thin the # of non-isomorphic log appears

$$f^{t}: (C^{t}, \times, -, \times,) \rightarrow X_{0}^{t}$$

$$Speck^{t}$$

with $-\frac{f^t}{f} = f$ and strict where $x_0^t = speck^t$ is thirst

$$\left(\frac{1}{\sum_{E \in \hat{\Gamma}^{En} \setminus \hat{\Gamma}^{En}} \left(\frac{1}{\sum_{i=1}^{s} \omega(E_i)} \right) \right)$$